Quantitative Measurement of IgG to Severe Acute Respiratory Syndrome Coronavirus-2 Proteins Using ImmunoCAP

Author:

Keshavarz BehnamORCID,Wiencek Joesph R.,Workman Lisa J.,Straesser Matthew D.,Muehling Lyndsey M.,Canderan Glenda,Drago Fabrizio,Bonham Catherine A.,Sturek Jeffrey M.,Ramani Chintan,McNamara Coleen A.,Woodfolk Judith A.,Kadl Alexandra,Platts-Mills Thomas A.E.,Wilson Jeffrey M.ORCID

Abstract

<b><i>Background:</i></b> Detailed understanding of the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the cause of coronavirus disease 2019 (CO­VID-19) has been hampered by a lack of quantitative antibody assays. <b><i>Objective:</i></b> The objective was to develop a quantitative assay for IgG to SARS-CoV-2 proteins that could be implemented in clinical and research laboratories. <b><i>Methods:</i></b> The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding domain (RBD) or nucleocapsid protein to the solid phase of the ImmunoCAP. Plasma and serum samples from patients hospitalized with COVID-19 (<i>n</i> = 60) and samples from donors banked before the emergence of COVID-19 (<i>n</i> = 109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform. <b><i>Results:</i></b> At a cutoff of 2.5 μg/mL, the assay demonstrated sensitivity and specificity exceeding 95% for IgG to both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 μg/mL (IQR 18–52) and 24.5 μg/mL (IQR 9–59), respectively. Among 17 patients with longitudinal samples, there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 μg/mL, or 1% of total IgG. <b><i>Conclusions:</i></b> We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to mutated COVID-19 proteins, has good performance characteristics, and has a readout in standardized units.

Publisher

S. Karger AG

Subject

Immunology,General Medicine,Immunology and Allergy

Reference20 articles.

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020 May;20(5):533–4.

2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–3.

3. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020 Jul;26(7):1033–6.

4. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, et al. Rapid decay of Anti-SARS-CoV-2 antibodies in persons with mild covid-19. N Engl J Med. 2020 Sep 10;383(11):1085–7.

5. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020 Aug;584(7821):437–42.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3