Hyperoxia and the Immature Brain

Author:

Reich Bettina,Hoeber Daniela,Bendix Ivo,Felderhoff-Mueser Ursula

Abstract

Despite major advances in obstetrics and neonatal intensive care, preterm infants frequently suffer from neurological impairments in later life. Preterm and also full-term neonates are generally susceptible to injury caused by reactive oxygen species due to the immaturity of endogenous radical scavenging systems. It is well known that high oxygen levels experienced during the critical phase of maturation can profoundly influence developmental processes. Supraphysiological oxygen concentrations used for resuscitation or in the care of critically ill infants are known to have deleterious effects on the developing lung and retina, contributing to the pathophysiology of neonatal diseases like bronchopulmonary dysplasia and retinopathy of prematurity. Moreover, experimental work from the last decade suggests that hyperoxia also leads to neuronal and glial cell death, contributing to the injury of white and grey matter observed in preterm infants. During the critical phase of brain maturation, hyperoxia can alter developmental processes, resulting in the disruption of neural plasticity and myelination. However, oxygen therapy can often not be avoided in neonatal intensive care. Therefore, in situations requiring oxygen supplementation, in addition to the development of appropriate monitoring systems, protective and/or regenerative strategies are highly warranted. Here, we summarise the clinical and experimental evidence as well as potential therapeutic strategies, providing an overview of the pathophysiology of oxygen exposure on the developing central nervous system and its impact on neonatal brain injury.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3