Green Tea-Derived Catechins Suppress the Acid Productions of Streptococcus mutans and Enhance the Efficiency of Fluoride

Author:

Han Sili,Washio Jumpei,Abiko Yuki,Zhang Linglin,Takahashi NobuhiroORCID

Abstract

Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 m<sc>m</sc> at pH 7.0, 0.3 m<sc>m</sc> at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p &lt; 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5–86.6% (p &lt; 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3