Weighted Gene Correlation Network Analysis (WGCNA) Detected Loss of MAGI2 Promotes Chronic Kidney Disease (CKD) by Podocyte Damage

Author:

Zuo Zhi,Shen Jian-Xiao,Pan Yan,Pu Juan,Li Yong-Gang,Shao Xing-hua,Wang Wan-Peng 

Abstract

Background/Aims: Podocyte damage is associated with proteinuria, glomerulosclerosis and decline of renal function. This study aimed to screen critical genes associated with podocyte injury in chronic kidney disease (CKD) by weighted gene correlation network analysis (WGCNA), and explore related functions. Methods: GSE66107, GSE93798, GSE30528, GSE32591 gene expression data including podocyte injury models or glomeruli in CKD patients were downloaded from the GEO database. R was used for data analysis. Differentially expressed genes (DEGs) (FDR< 0.05 or |Fold Change|≥1.5) in GSE993395 were assessed by WGCNA. According to Gene Ontology (GO) and known podocyte standard genes (PSGs), podocyte injury-associated modules were defined, with hub genes selected based on average intramodular connectivity. The Cytoscape software was used for network visualization. Nephroseq was used to assess the clinical significance of hub genes. Small interfering RNA (siRNA) was used to evaluate the roles of hub genes in podocyte injury Results: Totally 7957 DEGs were screened, with 15 (co.DEGs) altered in all 4 datasets; 4031 DEGs were used for WGCNA, encompassing 12 modules. Green modules (most PSGs and co.DEGs) were significantly enriched in glomerular development, and considered podocyte injury-associated modules. Furthermore, MAGI2 (a hub gene) was also a co.DEG and PSG. Glomerular MAGI2 levels were reduced in various kidney diseases, and positively and negatively associated with glomerular filtration rate and urinary protein levels in CKD patients. Moreover, MAIG2 knockdown reduced NPHS2, CD2AP and SYNPO levels, and induced podocyte rearrangement and apoptosis. Conclusion: MAGI2 identified by WGCNA regulates cytoskeletal rearrangement in podocytes, with its loss predisposing to proteinuria and CKD.

Publisher

S. Karger AG

Subject

Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3