Adaptive Cross-Resistance to Aminoglycoside Antibiotics in Pseudomonas aeruginosa Induced by Topical Dosage of Neomycin

Author:

Uemura Shuji,Yokota Shin-ichi,Shiraishi Tsukasa,Kitagawa Manabu,Hirayama Suguru,Kyan Ryoko,Mizuno Hirotoshi,Sawamoto Keigo,Inoue Hiroyuki,Miyamoto Atsushi,Narimatsu Eichi

Abstract

Background: Topical antimicrobial formulations containing neomycin are commonly used to prevent and treat burn infections. However, Pseudomonas aeruginosa shows rapid acquisition of adaptive resistance to neomycin. This study aimed to evaluate the survival of P. aeruginosa during exposure to neomycin at high concentrations comparable to those used in topical formulations, and to investigate the effect of adaptive resistance to neomycin on the susceptibility to other aminoglycosides. Methods: Strain IID1130 [neomycin minimal inhibitory concentration (MIC) = 4 µg/ml] was incubated on an agar medium containing neomycin at high concentrations (8-4,096 µg/ml), and growing colonies were macroscopically observed. Acquisition of adaptive resistance was examined for 5 P. aeruginosa strains. Cells were sequentially passaged on agar medium containing neomycin with step-wise increased concentrations (8-2,048 µg/ml). To assess reversion of antibiotic susceptibility, the resulting colonies were repeatedly subcultured on antibiotic-free agar plates. Results: Growing IID1130 colonies were macroscopically detected on a neomycin-containing (2,048 µg/ml) agar plate for 48 h. These cells showed increasing MIC for not only neomycin, but also gentamicin and amikacin; the MIC values were occasionally higher than the breakpoints. When the adapted cells were subcultured on antibiotic-free agar, several passages were required for reversion of susceptibility. Conclusions: Our findings suggest that P. aeruginosa can survive in the presence of neomycin with a concentration typically used in topical dosage forms, and that the acquired adaptive resistance is persistent and is accompanied by cross-resistance to other aminoglycosides.

Publisher

S. Karger AG

Subject

Infectious Diseases,Pharmacology (medical),Drug Discovery,Pharmacology,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3