Peptidomic Analysis of Endometrial Tissue from Patients with Ovarian Endometriosis

Author:

Xue Yunping,Xu Pengfei,Xu Sujuan,Xue Kai,Xu Lingling,Chen Jie,Xu Juan,Shi Xiaoyan,Li Qian,Gu Lin

Abstract

Background/Aims: Ovarian endometriosis (OvE) is ovarian cyst that is lined with endometrial tissue. They are found in 17–44% of women with endometriosis. Their clinical manifestations include pelvic pain, dysmenorrhea, dyspareunia, and infertility. Although the incidence of OvE has increased yearly, the exact pathogenesis of OvE is still unclear. We used peptidomics, an emerging branch of proteomics, to identify differentially expressed peptides in order to determine the possible roles of these peptides in the pathogenesis of OvE. Methods: The ectopic and eutopic endometria of OvE were used to extract peptides with 10-kDa molecular weight cutoff filters, and the peptide precursor proteins were then identified with PEAKS software, followed by quantification with the TMT labeling method and subsequent analysis by liquid chromatography-tandem mass spectrometry. Gene ontology (GO) analysis, pathway analysis, SMART, and SABLE were used to study the possible functions of these peptide according to their precursor proteins’ function. The effects of peptides derived from VCAM-1 (PDFV) on endometrial stromal cell (ESC) migration and invasion were examined with wound healing assays and Transwell assays and the expression of E-cadherin was detected by western blotting. Results: A total of 491 peptides were identified with abundant differences between the two groups of samples (p < 0.05, and absolute fold change ≥ 2). SMART and SABLE database showed that 42 of the 491 peptides were located in the conserved structural domains of their protein precursors and contained secondary structure and, among them, 2 peptides’ precursor proteins were associated with the cell proliferation. Additionally, 5 peptides’ precursor proteins were associated with endometriosis. Our study confirmed that PDFV promoted ESC migration and invasion and reduced E-cadherin expression (p < 0.05). Conclusion: PDFV and its precursor protein VCAM-1 may be involved in the process of OvE formation by reducing the expression of E-cadherin. The peptidomics analysis provides new insight for future studies of the mechanisms of OvE development.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3