Author:
Ishiko Shinya,Goligorsky Michael S.
Abstract
<b><i>Background:</i></b> Mitochondrial, lysosomal, and peroxisomal dysfunction; defective autophagy; mitophagy; and pexophagy, as well as the loss of glycocalyx integrity are known contributors to initiation and progression of diverse kidney diseases. Those cellular organelles are tightly interactive in health, and during development of a disease, damage in one may propagate to others. By extension, it follows that restoring an individual defect may culminate in a broader restorative spectrum and improvement of cell and organ functions. <b><i>Summary:</i></b> A novel strategy of reconditioning cellular organellar dysfunction, which we define as refurbishment of pathogenically pivotal intra- or extracellular elements, damaged in the course of disease and impeding restoration, is briefly outlined in this overview. Individual therapeutic reconditioning approaches targeting selected organelles are cataloged. We anticipate that the proposed reconditioning strategy in the future may enrich the arsenal of regenerative medicine and nephrology. <b><i>Key Message:</i></b> The arsenal of regenerative medicine and nephrology consisting of organ transplantation, use of stem cells, cell-free approaches, cell reprogramming strategies, and organ engineering has been enriched by the reconditioning strategy. The latter is based on the recognition of two facts that (a) impairment of diverse cellular organelles contributes to pathogenesis of kidney disease and (b) individual organelles are functionally interactively coupled, which explains the “domino effect” leading to their dysfunction. Reconditioning takes advantage of these facts and, while initially directed to restore the function of individual cellular organelles, culminates in the propagation of a therapeutic intervention to account for improved cell and organ function. Examples of such interventions are briefly summarized along the presentation of defective cellular organelles contributing to pathogenesis of kidney disease.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献