Biological Responses of the Immature Annulus Fibrosus to Dynamic Compression in a Disc Perfusion Culture

Author:

Li Pei,Gan Yibo,Wang Haoming,Xu Yuan,Song Lei,Zhang Chengmin,Li Songtao,Zhou Qiang

Abstract

Mechanical stimuli participate in disc development and remodelling. However, the effects of mechanical load on the immature annulus fibrosus (AF) are largely unclear. This study aimed to investigate how the immature AF responded to dynamic compressive magnitude and duration. Immature porcine discs were bioreactor-cultured for 7 days and then dynamically compressed at various magnitudes (0.1, 0.2, 0.4, 0.8 and 1.3 MPa at a frequency of 1.0 Hz for 2 h/day) and durations (1, 2, 4 and 8 h/day at a magnitude of 0.4 MPa and a frequency of 1.0 Hz). Non-compressed discs were used as controls. The immature AF tissue was analysed for histology, gene expression (aggrecan, collagen I, ADAMTS-4, MMP-3, TIMP-1 and TIMP-3), biochemical content of glycosaminoglycans (GAG) and hydroxyproline (HYP) and aggrecan immunohistochemical staining. In the lower-compressive-magnitude groups (0.1, 0.2 and 0.4 MPa), the immature AF showed an up-regulation in the expression of matrix genes, GAG and HYP content and aggrecan deposition. In the compression duration groups, the GAG and HYP content and aggrecan deposition declined to a minimum in the 8-hour group, in which a catabolic gene expression profile was found. In conclusion, this study indicated that the effects of dynamic compression on the immature AF are magnitude and duration dependent and that catabolic remodelling within the immature AF can be induced by high compressive magnitudes and long compressive durations.

Publisher

S. Karger AG

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3