Involvement of Pattern Recognition Receptors in the Direct Influence of Bacterial Components and Standard Antiacne Compounds on Human Sebaceous Gland Cells

Author:

Zouboulis Christos C.ORCID,Oeff Marina K.,Hiroi Naoki,Makrantonaki Evgenia,Bornstein Stefan R.

Abstract

Introduction: Pattern recognition receptors are involved in innate and adaptive immunity by detecting microbial components. Bacteria have been accused to play a role in inflammatory acne. We investigated the potential involvement of Toll-like receptor (TLR)2, TLR4, TLR6, and CD14 in the direct influence of bacterial components and standard antiacne compounds on human sebocytes. Methods: mRNA and protein expression of TLR2, TLR4, TLR6, and CD14 in SZ95 sebocytes was evaluated by real-time qRT-PCR and immunocytochemistry. The effects of lipopolysaccharides (LPS) and lipoteichoic acid on TLR2, TLR4, and CD14 expression and of cytokine/chemokine secretion by 13-cis-retinoic acid, all-trans-retinoic acid, retinol, and hydrocortisone at the mRNA and protein levels were assessed by real-time qRT-PCR and ELISA and verified by cocultivation with neutralizing antibodies. Results: The constitutive expression of TLR2, TLR4, and CD14 in SZ95 sebocytes was augmented by exposure to LPS. Hydrocortisone induced TLR2, but markedly reduced TLR4 expression. 13-cis-retinoic acid and all-trans-retinoic acid regulated IL-6 release. LPS enhanced and hydrocortisone reduced cytokine and chemokine release. Anti-TLR4 and anti-CD14 mAb blocked LPS-induced IL-8 and IL-6 release. Conclusions: Microbial components use pattern recognition receptors to directly activate sebocytes to express a wide range of proinflammatory molecules and especially IL-8 and IL-6 in a TLR4- and CD14-specific manner. Retinoids, but mostly corticosteroids, also use this pathway to exhibit anti-inflammatory effects.

Publisher

S. Karger AG

Subject

Dermatology,Pharmacology,Physiology,General Medicine

Reference47 articles.

1. Georgel P, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, et al. A Toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect Immun. 2005;73(8):4512–21.

2. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–205.

3. Mattii M, Lovászi M, Garzorz N, Atenhan A, Quaranta M, Lauffer F, et al. Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br J Dermatol. 2018;178(3):722–30.

4. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

5. Zouboulis CC, Beutler C, Merk HF, Baron JM. RIS-1/psoriasin expression in epithelial skin cells indicates their selective role in innate immunity and in inflammatory skin diseases including acne. Dermatoendocrinol. 2017;9(1):e1338993.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3