Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy

Author:

Feng Yanhai,Wang Yu,Wang Pei,Huang Yalan,Wang Fengjun

Abstract

Background/Aims: Short-chain fatty acids (SCFAs) are the major energy resources of intestinal epithelial cells. It has been reported that SCFAs can repair the dysfunction of intestinal barrier, however, the underlying mechanisms are still not fully understood. Here, we investigated the stimulative and protective effects of SCFAs on intestinal barrier function and the possible mechanisms. Methods: To investigate the effects of SCFAs on intestinal barrier function, the Caco-2 monolayers were exposed to acetate, propionate, butyrate respectively or simultaneously without or with lipopolysaccharide (LPS). Next, Caco-2 cells were treated with trichostatin A and etomoxir to identify whether SCFAs act as HDAC inhibitors or energy substances. To activate NLRP3 inflammasome and autophagy, Caco-2 cells were treated with LPS+ATP and rapamycin respectively without or with SCFAs. The transepithelial electrical resistance (TER) and paracellular permeability were respectively detected with a Millicell-ERS voltohmmeter and fluorescein isothiocyanate-labeled dextran. Immunoblotting and immunofluorescence were applied to analyze the expression and distribution of tight junction proteins, and the activation of NLRP3 inflammasome and autophagy. Results: Acetate (0.5mM), propionate(0.01mM) and butyrate (0.01mM) alone or in combination significantly increased TER, and stimulated the formation of tight junction. SCFAs also dramatically attenuated the LPS-induced TER reduction and paracellular permeability increase, accompanying significantly alleviated morphological disruption of ZO-1 and occludin. Meanwhile, the activation of NLRP3 inflammasome and autophagy induced by LPS were significantly inhibited by SCFAs. Trichostatin A imitated the inhibiting action of SCFAs on NLRP3 inflammasome, whereas etomoxir blocked the action of SCFAs on protecting intestinal barrier and inhibiting autophagy. In addition, the activation of autophagy and NLRP3 inflammasome by rapamycin and LPS+ATP resulted in TER reduction, paracellular permeability increase and morphological disruption of both ZO-1 and occludin, which was alleviated by SCFAs. Conclusion: It is suggested that SCFAs stimulate the formation of intestinal barrier, and protect the intestinal barrier from the disruption of LPS through inhibiting NLRP3 inflammasome and autophagy. In addition, SCFAs act as energy substances to protect intestinal barrier and inhibit autophagy, but act as HDAC inhibitors to suppress NLRP3 inflammasome. Furthermore, the mutual promoting action between NLRP3 inflammasome and autophagy would destroy intestinal barrier function, which could be alleviated by SCFAs.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3