Activation of the Vascular Smooth Muscle GLP-1/NCX1 Pathway Regulates Cytoplasmic Ca2+ Homeostasis and Improves Blood Pressure Variability in Hypertension

Author:

Xu Yi,Chen Chuan,Yang Yanpeng,Ai Shanmu,Ao Wei,Kong LingwenORCID,Zhang Ying,Li Jun,Xiao JunORCID

Abstract

Background: Hypertension is the most common cardiovascular disease, and its main harmful effect is chronic damage to target organs. In some patients with well-controlled blood pressure, target organ damage still occurs. GLP-1 agonists have significant cardiovascular benefits, but their antihypertensive effect is limited. The cardiovascular protective effect of GLP-1 is worth studying. Methods: The ambulatory blood pressure of spontaneously hypertensive rats (SHRs) was detected by ambulatory blood pressure monitoring, and the characteristics of blood pressure and the effect of subcutaneous intervention with a GLP-1R agonist on blood pressure were observed. To explore the mechanism of the cardiovascular benefit of GLP-1R agonists in SHRs, we evaluated the effects of GLP-1R agonists on vasomotor function and calcium homeostasis in vascular smooth muscle cells (VSMCs) in vitro. Results: Although the blood pressure of SHRs was significantly higher than that of WKY rats, the blood pressure variability of SHRs was also significantly higher than that of the control group. The GLP-1R agonist significantly reduced blood pressure variability in SHRs, but the antihypertensive effect was not obvious. GLP-1R agonists can significantly improve the cytoplasmic calcium overload of VSMCs in SHRs by upregulating the expression of NCX1, improving the systolic and diastolic functions of arterioles, and reducing blood pressure variability. Conclusions: Taken together, these results provide evidence that GLP-1R agonists improved VSMC cytoplasmic Ca2+ homeostasis through upregulated NCX1 expression in SHRs, which plays a key role in blood pressure stability and broad cardiovascular benefits.

Publisher

S. Karger AG

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3