On the Possible Role of Brain Rhythms in Speech Perception: Intelligibility of Time-Compressed Speech with Periodic and Aperiodic Insertions of Silence

Author:

Ghitza Oded1,Greenberg Steven1

Affiliation:

1. Sensimetrics Corp. , Malden, Mass., b Boston University , Boston, Mass., and c Steven Greenberg , Silicon Speech, Santa Venetia, Calif. , USA

Abstract

Abstract This study was motivated by the prospective role played by brain rhythms in speech perception. The intelligibility – in terms of word error rate – of natural-sounding, synthetically generated sentences was measured using a paradigm that alters speech-energy rhythm over a range of frequencies. The material com-prised 96 semantically unpredictable sentences, each approximately 2 s long (6–8 words per sentence), generated by a high-quality text-to-speech (TTS) synthesis engine. The TTS waveform was time-compressed by a factor of 3, creating a signal with a syllable rhythm three times faster than the original, and whose intel-ligibility is poor (<50% words correct). A waveform with an artificial rhythm was produced by automatically segmenting the time-compressed waveform into consecutive 40-ms fragments, each followed by a silent interval. The parameters varied were the length of the silent interval (0–160 ms) and whether the lengths of silence were equal (‘periodic’) or not (‘aperiodic’). The performance curve (word error rate as a function of mean duration of silence) was U-shaped. The lowest word error rate (i.e., highest intelligibility) occurred when the silence was 80 ms long and inserted periodically. This is also the condition for which word error rate increased when the silence was inserted aperiodically. These data are consistent with a model (TEMPO) in which low-frequency brain rhythms affect the ability to decode the speech signal. In TEMPO, optimum intelligibility is achieved when the syllable rhythm is within the range of the high theta-frequency brain rhythms (6–12 Hz), comparable to the rate at which segments and syllables are articulated in conversational speech.

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Acoustics and Ultrasonics,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3