Evaluation of Renal Tissue Oxygenation Using Blood Oxygen Level-Dependent Magnetic Resonance Imaging in Chronic Kidney Disease

Author:

Chen Fen,Yan Han,Yang Fan,Cheng Li,Zhang Siwei,Li Shulin,Liu Caixia,Xu Kai,Sun Dong

Abstract

<b><i>Background:</i></b> Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) has been widely used to assess renal oxygenation changes in different kidney diseases in recent years. This study was designed to evaluate and compare renal tissue oxygenation using 2 BOLD-MRI analysis methods, namely, the regional and whole-kidney region of interest (ROI) selection methods. <b><i>Methods:</i></b> The study ended up with 10 healthy controls and 40 chronic kidney disease (CKD) patients without dialysis. Their renal BOLD-MRI data were analyzed using whole-kidney ROI selection method and compared with regional ROI selection method. <b><i>Results:</i></b> We found the cortical, medullary, and whole-kidney R2* values were significantly higher in CKD patients than those in controls. Compared with the regional ROI selection method, the whole-kidney ROI selection method yielded higher cortical R2* values in both controls and CKD patients. The whole-kidney R2* values of deteriorating renal function group were significantly higher than those in stable renal function group. <b><i>Conclusions:</i></b> Cortical and medullary oxygenation was decreased significantly in CKD patients compared with the healthy controls, particularly in the medulla. The whole-kidney R2* values were positively correlated with kidney function and inversely correlated with the estimated glomerular filtration rate and effective renal plasma flow. Whole-Kidney R2* value might effectively predict the progression of renal function in patients with CKD.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Reference27 articles.

1. Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia. Kidney Int. 2012;81(7):613–4.

2. Hirakawa Y, Tanaka T, Nangaku M. Renal hypoxia in CKD; pathophysiology and detecting methods. Front Physiol. 2017;8:99.

3. Nangaku M. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Nephron Exp Nephrol. 2004;98(1):e8–12.

4. Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol. 2011;38(7):474–80.

5. Ebrahimi B, Textor SC, Lerman LO. Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol. 2014;9(2):395–405.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3