The Impact of Hypo- and Hyperglycemia on Cognition and Brain Development in Young Children with Type 1 Diabetes

Author:

Nevo-Shenker Michal,Shalitin Shlomit

Abstract

Human and experimental animal data suggest both hyperglycemia and hypoglycemia can lead to altered brain structure and neurocognitive function in type 1 diabetes (T1D). Young children with T1D are prone to extreme fluctuations in glucose levels. The overlap of these potential dysglycemic insults to the brain during the time of most active brain and cognitive development may cause cellular and structural injuries that appear to persist into adult life. Brain structure and cognition in persons with T1D are influenced by age of onset, exposure to glycemic extremes such as severe hypoglycemic episodes, history of diabetic ketoacidosis, persistent hyperglycemia, and glucose variability. Studies using brain imaging techniques have shown brain changes that appear to be influenced by metabolic abnormalities characteristic of diabetes, changes apparent at diagnosis and persistent throughout adulthood. Some evidence suggests that brain injury might also directly contribute to psychological and mental health outcomes. Neurocognitive deficits manifest across multiple cognitive domains. Moreover, impaired executive function and mental health can affect patients’ adherence to treatment. This review summarizes the current data on the impact of glycemic extremes on brain structure and cognitive function in youth with T1D and the use of new diabetes technologies that may reduce these complications.

Publisher

S. Karger AG

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology, and Child Health

Reference50 articles.

1. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010 Sep;67(5):728–34.

2. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012 Apr;13(5):336–49.

3. Tamnes CK, Ostby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2010 Mar;20:534–48.

4. Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, et al. Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci U S A. 2014 Aug;111:13010–5.

5. Mazaika PK, Weinzimer SA, Mauras N, Buckingham B, White NH, Tsalikian E, et al. Variations in brain volume and growth in young children with type 1 diabetes. Diabetes. 2016 Feb;65(2):476–85.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3