M6A RNA Methylation-Mediated Dysregulation of AGAP2-AS1 Promotes Trastuzumab Resistance of Breast Cancer

Author:

Cai Yangjun,Zheng Haihong,Xu Dong,Xie Jingjing,Wang Weiwen,Liu Zhiwei,Zheng Zhongqiu

Abstract

<b><i>Introduction:</i></b> Trastuzumab is commonly used to treat human epidermal growth factor receptor-2-positive (HER2+) breast cancer, but its efficacy is often limited by chemotherapy resistance. Recent studies have indicated that long non-coding RNAs (lncRNAs) play important roles in tumor progression and response to therapy. However, the regulatory mechanisms associating lncRNAs and trastuzumab resistance remain unknown. <b><i>Methods:</i></b> Quantitative polymerase chain reaction was performed to detect the expression of related genes. Western blot and immunofluorescence assays were used to evaluate protein expression levels. A series of gain- or loss-of-function assays confirmed the function of AGAP2-AS1 in trastuzumab resistance, both in vitro and in vivo. RNA immunoprecipitation and pull-down analyses were conducted to verify the interaction between METTL3/YTHDF2 and lncRNA AGAP2-AS1. <b><i>Results:</i></b> AGAP2-AS1 was upregulated in trastuzumab-resistant cells and SKBR-3R-generated xenografts in nude mice. Silencing AGAP2-AS1 significantly decreased trastuzumab-induced cytotoxicity both in vitro and in vivo. Furthermore, m6A methylation of AGAP2-AS1 was reduced in trastuzumab-resistant cells compared to that in parental cells. In addition, METTL3 increased m6A methylation of AGAP2-AS1, which finally induced the suppressed AGAP2-AS1 expression. Moreover, YTHDF2 was essential for METTL3-mediated m6A methylation of AGAP2-AS1. Functionally, AGAP2-AS1 regulated trastuzumab resistance by inducing autophagy and increasing ATG5 expression. <b><i>Conclusion:</i></b> we demonstrated that METTL3/YTHDF2-mediated m6A methylation increased the expression of AGAP2-AS1, which could promote trastuzumab resistance in breast cancer. AGAP2-AS1 regulates trastuzumab resistance by inducing autophagy. Therefore, AGAP2-AS1 may be a promising predictive biomarker and therapeutic target in patients with breast cancer.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3