Solution of the problems of quasi-statics for an elastic body with double porosity

Author:

Tsagareli Ivane

Abstract

The construction of solutions in explicit form is especially important from the point of view of its application, since it makes it possible to effectively carry out a quantitative analysis of the problem under study. This paper investigates the processes of deformation of solids in the quasi-static case. Two-dimensional boundary value problems of Dirichlet and Neumann for an elastic body with double porosity are considered. In Using the Laplace transform, these problems are reduced to auxiliary boundary value problems. Special representations of solutions to auxiliary boundary value problems are constructed using elementary functions that allow reducing the original system of equations to equations of a simple structure and facilitate the solution of the original problems. Auxiliary boundary value problems are solved for a specific elastic body - a porous disk. Solutions to these problems are obtained in the form of series. Conditions are provided that ensure the absolute and uniform convergence of these series and the use of the inverse Laplace theorem. It is proved that the inverse transforms provide a solution to the initial problems.

Publisher

ACA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3