New dimeric complexes with semicarbazone mannich-based ligand; formation, structural investigation and biological activity
Author:
Abaas Hadeel J.1, Al-Jeboori Mohamad J.1ORCID
Affiliation:
1. Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Adhamiyah, Baghdad, Iraq
Abstract
The formation of a new semicarbazone Schiff-base ligand (E)-2-(2-(phenyl(2-phenylhydrazinyl)- methyl)cyclohexylidene)hydrazine-1-carboxamide (HL) and its complexes are reported. The new ligand was prepared from the condensation of the Mannich-base 2-(phenyl(2-phenylhydrazinyl)methyl)cyclohexan-1-one (M) with the semicarbazide. A series of metal complexes were prepared by the reaction of the ligand with the metal chlorides of Cr(III), Mn(II), Co(II), Ni(II), Cu(II)), Zn(II) and Cd(II). The structure of the ligand and its complexes were elucidated through analytical and spectroscopic techniques. The analyses indicated the ligand behaves as a monobasic tridentate species and the isolation of dimeric complexes with the general formula; [Cr(L)(Cl)2(H2O)]2, [M(L)Cl]2 (where M= Mn(II), Co(II), Ni(II), Cu(II)), Zn(II) and Cd(II)). These studies revealed a distorted octahedral geometry for Cr(III), a distorted square planar for Cu(II) and a tetrahedral arrangement for Mn(II), Co(II), Ni(II), Zn(II) and Cd(II). The biological activity of the prepared compounds against Escherichia coli, Pseudomonas auroginosa, Staphylococcus aureus and Bacillus subtilis compared with Cefotaxime (as a standard antibiotic) was also explored. Some of the examined compounds indicated a similar antibacterial activity to Cefotaxime. Furthermore, antifungal activity against Candida albicans and Rhizopus sporium was investigated, which showed that the ligand and its complexes exhibited good antifungal activity.
Keywords: Schiff-base ligand; Structural characterization; Dimeric semicarbazone complexes; Biological activity.
Publisher
Clinical Biotec
Subject
Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology
Reference32 articles.
1. 1. Al-Rubaye, B. K.; Al-Jeboori, M. J.; Potgieter, H. Metal Complexes of Multidentate N2S2 Heterocyclic Schiff-base Ligands; Formation, Structural Characterisation and Biological Activity. Journal of Physics: Conference Series, 2021, 1879(22074), 3-20. 2. 2. Al-Rubaye, B. K.; Brink, A.; Miller, G. J.; Potgieter, H.; Al-Jeboori, M. J. Crystal structure of (E)-4-benzylidene-6-phenyl-1,2,3,4,7,8,9,10-octahydrophenanthridine. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73(7), 1092-1096. 3. 3. Al-Rubaye, B. K.; Potgieter, H.; and Al-Jeboori, M. J. An Efficient One-Pot Approach for the Formation of Phenanthridine Derivative; Synthesis and Spectral Characterisation. Der Chemica Sinica, 2017, 8(3), 365-370. 4. 4. Al-Jeboori, M. J.; Al-Jebouri, F. A.; and Al-Azzawi, M. A. Metal complexes of a new class of polydentate Mannich bases: Synthesis and spectroscopic characterisation. Inorganica Chimica Acta, 2017, 379(1), 163-170. 5. 5. Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J. R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357, 144-172.
|
|