New dimeric complexes with semicarbazone mannich-based ligand; formation, structural investigation and biological activity

Author:

Abaas Hadeel J.1,Al-Jeboori Mohamad J.1ORCID

Affiliation:

1. Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Adhamiyah, Baghdad, Iraq

Abstract

The formation of a new semicarbazone Schiff-base ligand (E)-2-(2-(phenyl(2-phenylhydrazinyl)- methyl)cyclohexylidene)hydrazine-1-carboxamide (HL) and its complexes are reported. The new ligand was prepared from the condensation of the Mannich-base 2-(phenyl(2-phenylhydrazinyl)methyl)cyclohexan-1-one (M) with the semicarbazide. A series of metal complexes were prepared by the reaction of the ligand with the metal chlorides of Cr(III), Mn(II), Co(II), Ni(II), Cu(II)), Zn(II) and Cd(II). The structure of the ligand and its complexes were elucidated through analytical and spectroscopic techniques. The analyses indicated the ligand behaves as a monobasic tridentate species and the isolation of dimeric complexes with the general formula; [Cr(L)(Cl)2(H2O)]2, [M(L)Cl]2 (where M= Mn(II), Co(II), Ni(II), Cu(II)), Zn(II) and Cd(II)). These studies revealed a distorted octahedral geometry for Cr(III), a distorted square planar for Cu(II) and a tetrahedral arrangement for Mn(II), Co(II), Ni(II), Zn(II) and Cd(II). The biological activity of the prepared compounds against Escherichia coli, Pseudomonas auroginosa, Staphylococcus aureus and Bacillus subtilis compared with Cefotaxime (as a standard antibiotic) was also explored. Some of the examined compounds indicated a similar antibacterial activity to Cefotaxime. Furthermore, antifungal activity against Candida albicans and Rhizopus sporium was investigated, which showed that the ligand and its complexes exhibited good antifungal activity. Keywords: Schiff-base ligand; Structural characterization; Dimeric semicarbazone complexes; Biological activity.

Publisher

Clinical Biotec

Subject

Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3