Anti-bacterial and anti-biofilm activity of bacteriophages against <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i> isolated from orthopedic patients

Author:

Gordina E. M.1ORCID,Bozhkova S. A.1,Smirnova L. N.1

Affiliation:

1. Vreden National Medical Research Center of Traumatology and Orthopedics

Abstract

Objective. To investigate the susceptibility of K. pneumoniae and P. aeruginosa to a polyvalent bacteriophage preparation and its effect on biofilm formation and the strain biofilms isolated from orthopedic patients.Materials and methods. The research sample included 50 clinical isolates of K. pneumoniae and 50 clinical isolates of P. aeruginosa. Identification was performed by MALDI-TOF-MS; antibiotic susceptibility was assessed in accordance with EUCAST v 21. Detection of carbapenemase genes was carried out by real-time PCR. The strain susceptibility to the bacteriophage was determined by a spot test; K. pneumoniae ATCC 33495 and P. aeruginosa ATCC 27853 were determined by assessing their growth curves. Biofilms of strains sensitive to bacteriophages were formed according to the O’Toole method by co-incubation of bacteria with phages. The effect of bacteriophages on 24-hour biofilms was assessed by comparing the optical density of dye extracts of bacteriophage-treated wells and control wells at 570 nm. The data were analyzed using the Statistica environment.Results. It was found that 7 (14%) of K. pneumoniae and 15 (30%) of P. aeruginosa were resistant to carbapenems. Six strains of K. pneumoniae produced NDM-cabapenemase, while four isolates of P. aeruginosa produced VIM-carbapenemases. The bacteriophage preparation under study was active against 36% and 56% of K. pneumoniae and P. aeruginosa strains, respectively. The majority of the studied strains reduced biofilm production upon co-incubation with a phage; however, a decrease in biomass of greater than 80% was observed only for P. aeruginosa. The effect of the bacteriophage on the already formed biofilms was less pronounced, despite a decrease in the biofilm biomass in 78% and 68% of K.pneumoniae and P. aeruginosa strains, respectively.Conclusion. The results obtained confirm the need for further research into the action of bacteriophages against pathogens caused by implant-associated infections and the development of bacteriophage therapy for orthopedic patients.

Publisher

Pacific State Medical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3