Reversible Lactic Acidosis in a Newborn With Thiamine Transporter-2 Deficiency

Author:

Pérez-Dueñas Belén12,Serrano Mercedes2,Rebollo Mónica3,Muchart Jordi3,Gargallo Eva4,Dupuits Celine5,Artuch Rafael26

Affiliation:

1. Departments of Child Neurology,

2. Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain; and

3. Radiology,

4. Pediatrics, and

5. Unité fonctionnelle neurométabolique, Hôpital Pitié-Salpêtrière, Paris, France

6. Clinical Biochemistry, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain;

Abstract

Thiamine transporter-2 deficiency is a recessive disease caused by mutations in the SLC19A3 gene. Patients manifest acute episodes of encephalopathy; symmetric lesions in the cortex, basal ganglia, thalami or periaqueductal gray matter, and a dramatic response to biotin or thiamine. We report a 30-day-old patient with mutations in the SLC19A3 gene who presented with acute encephalopathy and increased level of lactate in the blood (8.6 mmol/L) and cerebrospinal fluid (7.12 mmol/L), a high excretion of α-ketoglutarate in the urine, and increased concentrations of the branched-chain amino acids leucine and isoleucine in the plasma. MRI detected bilateral and symmetric cortico-subcortical lesions involving the perirolandic area, bilateral putamina, and medial thalami. Some lesions showed low apparent diffusion coefficient values suggesting an acute evolution; others had high values likely to be subacute or chronic, most likely related to the perinatal period. After treatment with thiamine and biotin, irritability and opisthotonus disappeared, and the patient recovered consciousness. Biochemical disturbances also disappeared within 48 hours. After discontinuing biotin, the patient remained stable for 6 months on thiamine supplementation (20 mg/kg/day). The examination revealed subtle signs of neurologic sequelae, and MRI showed necrotic changes and volume loss in some affected areas. Our observations suggest that patients with thiamine transporter 2 deficiency may be vulnerable to metabolic decompensation during the perinatal period, when energy demands are high. Thiamine defects should be excluded in newborns and infants with lactic acidosis because prognosis largely depends on the time from diagnosis to thiamine supplementation.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3