Role of Copy Number Variants in Structural Birth Defects

Author:

Southard Abigail E.1,Edelmann Lisa J.2,Gelb Bruce D.23

Affiliation:

1. Mount Sinai School of Medicine, New York, New York;

2. Department of Genetics & Genomic Sciences; and

3. Department of Pediatrics, Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York

Abstract

BACKGROUND AND OBJECTIVE: Human genomes include copy number variants (CNVs), defined as regions with DNA gains or losses. Pathologic CNVs, which are larger and often occur de novo, are increasingly associated with disease. Given advances in genetic testing, namely microarray-based comparative genomic hybridization and single nucleotide polymorphism arrays, previously unidentified genotypic aberrations can now be correlated with phenotypic anomalies. The objective of this study was to conduct a nonsystematic literature review to document the role of CNVs as they relate to isolated structural anomalies of the craniofacial, respiratory, renal, and cardiac systems. METHODS: All full-length articles in the PubMed database through May 2011 that discussed CNVs and isolated structural defects of the craniofacial, respiratory, renal, and cardiac systems were considered. Search terms queried include CNV, copy number variation, array comparative genomic hybridization, birth defects, craniofacial defects, respiratory defects, renal defects, and congenital heart disease. Reports published in languages other than English and articles regarding CNVs and neurocognitive deficits were not considered. RESULTS: Evidence supports that putatively pathogenic CNVs occur at an increased frequency in patients with isolated structural birth defects and implicate specific regions of the genome. Through CNV detection, advances have been made in identifying genes and specific loci that underlie isolated birth defects. CONCLUSIONS: Although limited studies have been published, the promising evidence reviewed here warrants the continued investigation of CNVs in children with isolated structural birth defects. Patient care and genetic counseling stand to improve through a better understanding of CNVs and their effect on disease phenotype.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3