Artificial Intelligence to Improve Health Outcomes in the NICU and PICU: A Systematic Review

Author:

Adegboro Claudette O.1,Choudhury Avishek2,Asan Onur2,Kelly Michelle M.1

Affiliation:

1. Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin

2. Division of Engineering Management, School of Systems and Enterprise, Stevens Institute of Technology, Hoboken, New Jersey

Abstract

CONTEXT Artificial intelligence (AI) technologies are increasingly used in pediatrics and have the potential to help inpatient physicians provide high-quality care for critically ill children. OBJECTIVE We aimed to describe the use of AI to improve any health outcome(s) in neonatal and pediatric intensive care. DATA SOURCE PubMed, IEEE Xplore, Cochrane, and Web of Science databases. STUDY SELECTION We used peer-reviewed studies published between June 1, 2010, and May 31, 2020, in which researchers described (1) AI, (2) pediatrics, and (3) intensive care. Studies were included if researchers assessed AI use to improve at least 1 health outcome (eg, mortality). DATA EXTRACTION Data extraction was conducted independently by 2 researchers. Articles were categorized by direct or indirect impact of AI, defined by the European Institute of Innovation and Technology Health joint report. RESULTS Of the 287 publications screened, 32 met inclusion criteria. Approximately 22% (n = 7) of studies revealed a direct impact and improvement in health outcomes after AI implementation. Majority were in prototype testing, and few were deployed into an ICU setting. Among the remaining 78% (n = 25) AI models outperformed standard clinical modalities and may have indirectly influenced patient outcomes. Quantitative assessment of health outcomes using statistical measures, such as area under the receiver operating curve (56%; n = 18) and specificity (38%; n = 12), revealed marked heterogeneity in metrics and standardization. CONCLUSIONS Few studies have revealed that AI has directly improved health outcomes for pediatric critical care patients. Further prospective, experimental studies are needed to assess AI’s impact by using established implementation frameworks, standardized metrics, and validated outcome measures.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics,General Medicine,Pediatrics, Perinatology and Child Health

Reference68 articles.

1. Some philosophical problems from the standpoint of artificial intelligence;McCarthy,1969

2. Artificial Intelligence;Scarcello,2019

3. Potential liability for physicians using artificial intelligence;Price;JAMA.,2019

4. US Food and Drug Administration. October 22, 2020: Patient Engagement Advisory Committee Meeting Announcement. 2020. Available at: https://www.fda.gov/advisory-committees/advisory-committee-calendar/october- 22-2020-patient-engagement-advisory- committee-meeting-announcement- 10222020-10222020. Accessed February 3, 2021

5. Can evolution produce robots?;Hild,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3