Delayed Umbilical Bleeding—A Presenting Feature for Factor XIII Deficiency: Clinical Features, Genetics, and Management

Author:

Anwar Rashida1,Minford Adrian2,Gallivan Louise1,Trinh Chi H.3,Markham Alexander F.1

Affiliation:

1. Molecular Medicine Unit, University of Leeds, St James’s University Hospital, Leeds, United Kingdom

2. St Luke’s Hospital, Bradford, United Kingdom

3. Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom

Abstract

Objectives. The objectives of this study were 1) to assess the importance of an early diagnosis for factor XIII (FXIII) deficiency, and 2) to investigate the molecular basis and mechanism(s) of disease in the patients under study. Methods. The case histories of 6 FXIII-deficient patients were examined to assess the influence of early versus delayed diagnosis and replacement therapy. The nucleotide sequence of the FXIIIA gene was determined to identify the underlying mutations responsible for the bleeding diathesis in each patient. Molecular modeling was used to predict the mechanism(s) of disease causation for each mutation. Results. All cases presented with umbilical hemorrhage. Patients 1 to 3 were diagnosed, and their prophylactic therapy was commenced in infancy. Diagnosis in patients 4 to 6 was considerably delayed and, as a result, they continued to suffer from many bleeding symptoms. The FXIIIA gene mutations identified in these patients were as follows: a homozygous GAA→AAA mutation in codon 102 (Glu102Lys) in patient 1 and a homozygous AGC→AGG mutation in codon 295 (Ser295Arg) in patients 2 to 6. These mutations segregate with disease and are absent from the normal population, suggesting that they are likely to be disease-causing sequence changes. Computer modeling indicates that both the Lys102 and Arg295 mutants are unable to fold correctly, and probably result in unstable FXIIIA molecules. Conclusions. We demonstrate the importance of recognizing delayed umbilical hemorrhage as a presenting feature for congenital FXIII deficiency, and the value of early diagnosis and prophylaxis. The bleeding disorder of patient 1 was attributable to a homozygous Glu102Lys mutation in FXIIIA. A homozygous Ser295Arg mutation in FXIIIA was responsible for FXIII deficiency in patients 2 to 6.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3