Abstract
Charcoal fines are co-products of the wood carbonization process, unwanted because they reduce the gravimetric yield of the main product, charcoal. It can be produced due to the carbonization process, during the storage and transport of charcoal. Pelletizing charcoal fines increases the energy density of this material, producing a homogeneous fuel with lower moisture content, enabling burning in equipment with high energy efficiency, in addition to desirable properties in energy products such as high fixed carbon content and low moisture content. This study evaluated the effect of moisture content and drying time on the production of black pellets from charcoal fines bound with rice starch (Oryza sativa) on the physicochemical and mechanical characteristics. Black pellets were produced using two proportions of water (10 or 20%) and a drying time of 4 or 6 hours. Black pellets were evaluated for their proximate analysis, elemental composition, moisture content, size, apparent density, calorific value and energy density. The addition of water did not affect the content of volatile matter, ash, and fixed carbon, while the treatment with addition of 20% water and four hours of drying showed a higher moisture content (3.34%). The addition of water allowed for better heat conduction and particle arrangement, producing pellets with a durability greater than 98%. The better arrangement promoted by the addition of 20% water also increased the density of the pellets, resulting in greater energy density. Black pellets can be considered an alternative for residential heating, with T3 treatment (20% - 4h) with a high energy density and better performance in terms of desirable properties for use and commercialization according to the standard EN 14961-6.
Publisher
Sociedade de Investigacoes Florestais (SIF)