Abstract
This study involved the investigation of various machine learning methods, including four classification tree-based ML models, namely the Adaptive Boosting tree, Random Forest, Gradient Boost Decision Tree, Extreme Gradient Boosting tree, and three non-tree-based ML models, namely Support Vector Machines, Multi-layer Perceptron and k-Nearest Neighbors for predicting the level of severity of large truck crashes on Wyoming road networks. The accuracy of these seven methods was then compared. The Final ROC AUC score for the optimized random forest model is 95.296 %. The next highest performing model was the k-NN with 92.780 %, M.L.P. with 87.817 %, XGBoost with 86.542 %, Gradboost with 74.824 %, SVM with 72.648 % and AdaBoost with 67.232 %. Based on the analysis, the top 10 predictors of severity were obtained from the feature importance plot. These may be classified into whether safety equipment was used, whether airbags were deployed, the gender of the driver and whether alcohol was involved.
Publisher
Centre of Sociological Research, NGO
Subject
Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine
Reference45 articles.
1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283).
2. Abou Elassad, Z. E., Mousannif, H., & Al Moatassime, H. (2020). A proactive decision support system for predicting traffic crash events: A critical analysis of imbalanced class distribution. Knowledge-Based Systems, 205, 106314.
3. Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 6(1), 20-29.
4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
5. Burez, J., & Van den Poel, D. (2008). Separating financial from commercial customer churn: A modeling step towards resolving the conflict between the sales and credit department. Expert Systems with Applications, 35(1-2), 497-514.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting Pedestrian Involvement in Fatal Crashes Using a TabNet Deep Learning Model;Proceedings of the 16th ACM SIGSPATIAL International Workshop on Computational Transportation Science;2023-11-13