Inferring links in directed complex networks through feed forward loop motifs

Author:

Roy Satyaki,Al Musawi Ahmad F.,Ghosh PreetamORCID

Abstract

AbstractComplex networks are mathematical abstractions of real-world systems using sets of nodes and edges representing the entities and their interactions. Prediction of unknown interactions in such networks is a problem of interest in biology, sociology, physics, engineering, etc. Most complex networks exhibit the recurrence of subnetworks, called network motifs. Within the realm of social science, link prediction (LP) models are employed to model opinions, trust, privacy, rumor spreading in social media, academic and corporate collaborations, liaisons among lawbreakers, and human mobility resulting in contagion. We present an LP metric based on a motif in directed complex networks, called feed-forward loop (FFL). Unlike nearest neighbor-based metrics and machine learning-based techniques that gauge the likelihood of a link based on node similarity, the proposed approach leverages a known dichotomy in the motif distribution of directed networks. Complex networks are sparse, causing most nodes and their associated links to have low motif participation. Yet, due to intrinsic network motif-richness, few links participate in many distinct motif substructures. Thus, the FFL-based metric combines the presence and absence of motifs as a signature to outperform baseline metrics on ten directed social and biological network datasets. We conclude with the future of the FFL-based metric in dynamic network inference as well as its use in designing combined metrics using network motifs of varying orders as features.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3