MRI load of cerebral microvascular lesions and neurodegeneration, cognitive decline, and dementia

Author:

Wang Rui,Laveskog Anna,Laukka Erika J.,Kalpouzos Grégoria,Bäckman Lars,Fratiglioni Laura,Qiu Chengxuan

Abstract

ObjectiveTo explore the differential associations of neurodegeneration and microvascular lesion load with cognitive decline and dementia in older people and the modifying effect of theAPOEgenotype on these associations.MethodsA sample of 436 participants (age ≥ 60 years) was derived from the population-based Swedish National study on Aging and Care in Kungsholmen, Stockholm, and clinically examined at baseline (2001–2003) and 3 occasions during the 9-year follow-up. At baseline, we assessed microvascular lesion load using a summary score for MRI markers of lacunes, white matter hyperintensities (WMHs), and perivascular spaces and neurodegeneration load for markers of enlarged ventricles, smaller hippocampus, and smaller gray matter. We assessed cognitive function using the Mini-Mental State Examination (MMSE) test and diagnosed dementia following theDiagnostic and Statistical Manual of Mental Disorders, 4th edition criteria. We analyzed data using linear mixed-effects, mediation, and random-effects Cox models.ResultsDuring the follow-up, 46 participants were diagnosed with dementia. Per 1-point increase in microvascular lesion and neurodegeneration score (range 0–3) was associated with multiple adjusted β-coefficients of −0.35 (95% confidence interval, −0.51 to −0.20) and −0.44 (−0.56 to −0.32), respectively, for the MMSE score and multiple adjusted hazard ratios of 1.68 (1.12–2.51) and 2.35 (1.58–3.52), respectively, for dementia; carryingAPOEε4 reinforced the associations with MMSE decline. WMH volume changes during the follow-up mediated 66.9% and 12.7% of the total association of MMSE decline with the baseline microvascular score and neurodegeneration score, respectively.ConclusionsBoth cerebral microvascular lesion and neurodegeneration loads are strongly associated with cognitive decline and dementia. The cognitive decline due to microvascular lesions is exacerbated byAPOEε4 and is largely attributed to progression and development of microvascular lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3