Early deviation from normal structural connectivity

Author:

Taylor Peter NealORCID,Moreira da Silva Nádia,Blamire Andrew,Wang Yujiang,Forsyth Rob

Abstract

ObjectiveStudies of outcome after traumatic brain injury (TBI) are hampered by the lack of robust injury severity measures that can accommodate spatial-anatomical and mechanistic heterogeneity. In this study we introduce a Mahalanobis distance measure (M) as an intrinsic injury severity measure that combines in a single score the many ways a given injured brain's connectivity can vary from that of healthy controls. Our objective is to test the hypotheses that M is superior to univariate measures in (1) discriminating patients and controls and (2) correlating with cognitive assessment.MethodsSixty-five participants (34 with mild TBI, 31 controls) underwent diffusion tensor MRI and extensive neuropsychological testing. Structural connectivity was inferred for all participants for 22 major white matter connections. Twenty-two univariate measures (1 per connection) and 1 multivariate measure (M), capturing and summarizing all connectivity change in a single score, were computed.ResultsOur multivariate measure (M) was able to better discriminate between patients and controls (area under the curve 0.81) than any individual univariate measure. M significantly correlated with cognitive outcome (Spearman ρ = 0.31; p < 0.05). No univariate measure showed significant correlation after correction for multiple comparisons.ConclusionsHeterogeneity in the severity and distribution of injuries after TBI has traditionally complicated the understanding of outcomes after TBI. Our approach provides a single, continuous variable that can fully capture individual heterogeneity. M's ability to distinguish even mildly injured patients from controls and its correlation with cognitive assessment suggest utility as an imaging-based marker of intrinsic injury severity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3