Author:
Cortelli P.,Perani D.,Parchi P.,Grassi F.,Montagna P.,De Martin M.,Castellani R.,Tinuper P.,Gambetti P.,Lugaresi E.,Fazio F.
Abstract
We used [18F]-2-fluoro-2-deoxy-D-glucose (FDG) and PET to study regional cerebral glucose utilization in seven patients with fatal familial insomnia (FFI), an inherited prion disease with a mutation at codon 178 of the prion protein gene. Four patients were methionine/methionine homozygotes at codon 129 (symptom duration, 8.5 ± 1 months) and three were methionine/valine (MET/VAL129) heterozygotes (symptom duration, 35± 11 months). A severely reduced glucose utilization of the thalamus and a mild hypometabolism of the cingulate cortex were found in all FFI patients. In six subjects the brain hypometabolism also affected the basal and lateral frontal cortex, the caudate nucleus, and the middle and inferior temporal cortex. Comparison between homozygous or heterozygous patients at codon 129 showed that the hypometabolism was more widespread in the MET/VAL129 group, which had a significantly longer symptom duration at the time of [18F] FDG PET study. Comparison between neuropathologic and [18F] FDG PET findings in six patients showed that areas with neuronal loss were also hypometabolic. However, cerebral hypometabolism was more widespread than the histopathologic changes and significantly correlated with the presence of protease-resistent prion protein (PrPres). Our findings indicate that hypometabolism of the thalamus and cingulate cortex is the hallmark of FFI, while the involvement of other brain regions depends on the duration of symptoms and some unknown factors specific to each patient. The present data also support the notion that PrPres formation is the cause of neuronal dysfunction in prion diseases.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献