Contribution of normal aging to brain atrophy in MS

Author:

Azevedo Christina J.,Cen Steven Y.,Jaberzadeh Amir,Zheng Ling,Hauser Stephen L.,Pelletier Daniel

Abstract

ObjectiveTo identify the top brain regions affected by MS-specific atrophy (i.e., atrophy in excess of normal aging) and to test whether normal aging and MS-specific atrophy increase or decrease in these regions with age.MethodsSix hundred fifty subjects (2,790 MRI time points) were analyzed: 520 subjects with relapse-onset MS from a 5-year prospective cohort with annual standardized 1-mm 3D T1-weighted images (3DT1s; 2,483 MRIs) and 130 healthy controls with longitudinal 3DT1s (307 MRIs). Rates of change in all FreeSurfer regions (v5.3) and Structural Image Evaluation Using Normalization of Atrophy (SIENA) were estimated with mixed-effects models. All FreeSurfer regions were ranked by the MS-specific atrophy slope/standard error ratio (βMS × time/SEβMS × time). In the top regions, age was added as an effect modifier to test whether MS-specific atrophy varied by age.ResultsThe top-ranked regions were all gray matter structures. For SIENA, normal aging increased from 0.01%/y at age 30 years to −0.31%/y at age 60 years (−0.11% ± 0.032%/decade, p < 0.01), whereas MS-specific atrophy decreased from −0.38%/y at age 30 years to −0.12%/y at age 60 years (0.09% ± 0.035%/decade, p = 0.01). Similarly, in the thalamus, normal aging increased from −0.15%/y at age 30 years to −0.62%/y at age 60 years (−0.16% ± 0.079%/decade, p < 0.05), and MS-specific atrophy decreased from −0.59%/y at age 30 years to −0.05%/y at age 60 years (0.18% ± 0.08%/decade, p < 0.05). In the putamen and caudate, normal aging and MS-specific atrophy did not vary by age.ConclusionsFor SIENA and thalamic atrophy, the contribution of normal aging increases with age, but does not change in the putamen and caudate. This may have substantial implications to understand the biology of brain atrophy in MS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Neurology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3