Torsion-shear behaviour at the interfaces of rigid interlocking blocks in masonry assemblages: experimental investigation and analytical approaches

Author:

Casapulla ClaudiaORCID,Mousavian Elham,Argiento Luca,Ceraldi Carla,Bagi Katalin

Abstract

AbstractIncreasing interest has recently been devoted to interlocking blocks/interfaces capable to enhance the sliding resistance of masonry joints to external forces. In this framework, this paper deals with the assessment of the torsion-shear capacity of the contact interface between the lock and the main body of an interlocking block, assumed to have a cohesive behaviour. The interlocking block is a rigid unit which, on its faces, have square cuboidal locks keeping the adjacent/overlapped blocks together and preventing blocks from sliding. Two numerical approaches and a novel ad hoc experimental investigation are proposed to simulate the torsion-shear behaviour by applying eccentrical shear forces to the lock. First, concave, convex and corrected concave formulations provided by the literature for assemblages of rigid blocks with conventional planar joints are extended to model the interlocking block behaviour. Then, according to a second approach based on the discrete element method, the concave-shaped interlocking block is modelled by convex polyhedrons representing the lock and the main body of the block, considered as individual rigid units stacked over each other with a cohesive contact in between. A novel experimental investigation on the limiting pure shear and torsion-shear combinations at the lock interface made of cohesive material is also presented. Two different mortars were chosen to make the specimens, which were casted using 3D printed moulds, and different test configurations were set up to simulate shear and torsion-shear failures. The analytical and numerical results are compared with each other and against the experimental ones, with interesting remarks on the application of the different approaches.

Funder

H2020 Marie Skłodowska-Curie Actions

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3