Analyzing the early structural build-up of accelerated cement pastes

Author:

Dorn TobiasORCID,Hirsch TaminoORCID,Stephan DietmarORCID

Abstract

AbstractExtrusion-based additive manufacturing imposes high requirements on the material stability right after the extrusion. Therefore, a thorough understanding of the chemical reactions that determine the early reduction in processability is necessary. Accelerators are especially considered here, which have a major influence on the early reaction. This study contributes to these issues by analyzing the influence of 0.1 wt% TEA (triethanolamine) and 2.0 wt% Ca(NO3)2 on the hydration of two CEM I 52.5 R. The hydration was analyzed by isothermal heat flow calorimetry and in-situ X-ray diffraction. Vicat needle penetration, a penetrometer of own design, and ultrasonic P-wave velocity development were used to monitor the early change in workability. The obtained results indicate that ettringite formation is the main factor influencing workability during the first 60 min of hydration. Afterwards, the influence of ettringite is exceeded by the formation of C–S–H. Ca(NO3)2 was shown to enhance C–S–H formation and had no significant effect on the workability during the first 60 min of hydration while rapidly decreasing workability during the induction period. TEA was shown to increase brownmillerite dissolution and ettringite formation and, consequently, promote the workability loss during the initial hydration period. The time of initial and final setting determined by the Vicat needle test depended mainly on the formation of C–S–H phases.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3