Abstract
The article investigates the influence of artificial neural network’s structure on the results, with example of multlayer perceptron for forecasting some of the financial indicators. Multiple tests were made with various networks structures: different numbers of hidden layers and different numbers of neurons in these layers. Based on tests results, the increase of network’s size is effective to a certain extent, but at some point the further size increase is unreasonable. Also, the test results demonstrate that overfitting problem for multilayer perceptron is not as crucial as for the other machine learning models, such as regression. Key words: artificial neural networks, forecasting, multlayer perceptron, overfitting, artificial neural netwok’s size.
Publisher
State University of Aerospace Instrumentation (SUAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An approach to forecasting macro indicators in Russia;Management and Business Administration;2023-10-17