Abstract
Oil palm plantations typically span large areas; therefore, remote sensing has become a useful tool for advanced oil palm monitoring. This work reviews and evaluates two approaches to analyze oil palm plantations based on hyperspectral remote sensing data: linear spectral unmixing and spectral variability. Moreover, a computational framework based on spectral unmixing for the estimation of fractional abundances of oil palm plantations is proposed in this study. Such approach also considers the spectral variability of hyperspectral image signatures. More specifically, the proposed computational framework modifies the linear mixing model by introducing a weighting vector, so that the spectral bands that contribute the least to the estimation of erroneous fractional abundances can be identified. This approach improves palm detection as it allows to differentiate them from other materials in terms of fractional abundances. Experimental results obtained from hyperspectral remote sensing data in the range 410-990 nm show improvements of 8.18 % in User Accuracy (Uacc) in the identification of oil palms by the proposed framework with respect to traditional unmixing methods. Thus, the proposed method achieved a 95% Uacc. This confirms the capabilities of the proposed computational framework and facilitates the management and monitoring of large areas of oil palm plantations.
Publisher
Instituto Tecnologico Metropolitano (ITM)
Reference26 articles.
1. "El sector palmero se ha consolidado en Colombia como un gremio responsable," in El palmicultor, 2019, pp. 6-7.
2. A. Drenth, G. A. Torres, and G. M. López, "Phytophthora palmivora, la causa de la Pudrición del cogollo en la palma de aceite," Rev. Palmas, vol. 34, no. 1, pp. 87-94, Jan. 2013.
3. L. F. Gómez, "Actualícese: todo lo que debe saber acerca de la PC--Hoja clorótica en Zona Norte," Fedepalma, vol. 540, pp. 17-19, Feb. 2017.
4. P. S. Thenkabail, I. Mariotto, M. K. Gumma, E. M. Middleton, D. R. Landis, and K. F. Huemmrich, "Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion/EO-1 Data," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 427-439, Apr. 2013. https://doi.org/10.1109/JSTARS.2013.2252601.
5. P. Ghamisi et al., "Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 37-78, Dec. 2017. https://doi.org/10.1109/MGRS.2017.2762087.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献