HYBRID DISCRETE WAVELET TRANSFORM AND TEXTURE ANALYSIS METHODS FOR FEATURE EXTRACTION AND CLASSIFICATION OF BREAST DYNAMIC THERMOGRAM SEQUENCES

Author:

Al-Rababah Khaleel,Mustaffa Mas Rina,Doraisamy Shyamala C.,Khalid Fatimah,de Pina Júnior Luís Filipe

Abstract

Breast cancer is a common cancer that hits women causing thousands of casualties every year. A cancerous tumor causes an increase of temperature near the region of the tumor. The heat generated by the temperature transferred to the skin surface. The temperature in the tumor area is warmer than in the healthy area. Detecting breast cancer in early stages can save women’s lives and lower the burden on the cost. Thermography is an imaging technique used for breast cancer detection. A dynamic thermography technique which is used to generate infrared images over a fixed time measured in minutes to detect the difference between the normal and cancerous areas in images. In this research, we propose a methodology to deal with the changes of temperature in patient's breasts by defining a set of efficient features resulted from extraction and reduction of coefficients obtained from breast thermogram images followed by classification. Texture feature methods (Histogram of Oriented Gradients (HOG) and Discrete Curvelet transform) are applied separately using the HH (high-high) and HL (high-low) sub band images of Discrete Wavelet transform (DWT). HOG-based features and Curvelet features are extracted by reducing coefficients’ vectors returned by the two methods. Finally, Support Vector Machine (SVM) binary classifier is used to classify the images to either normal or abnormal. The proposed work has successfully achieved an Accuracy of 98.2%, Sensitivity of 97.7%, and Specificity of 98.2% through empirical studies using dynamic breast thermogram dataset.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3