DROUGHT STRESS EFFECTS ON RESISTANT GENE EXPRESSION, GROWTH, AND YIELD TRAITS OF WHEAT (TRITICUM AESTIVUM L.)

Author:

FARHOOD A.N.,MERHIJ M.Y.,AL-FATLAWI Z.H.

Abstract

The study comprised two experiments that were carried out for two consecutive years (2019–2020 and 2020–2021) at the Agricultural Research Station, Babil Governorate, Iraq. In the first experiment, seven wheat (Triticum aestivum L.) cultivars, viz., Iraq, Ezz, Abba-99, Furat, Sham-6, N-70, and Tamoz, were studied for most drought- tolerant genes in 2019–2020. During this year, three drought-tolerant wheat cultivars, i.e., Iraq, Tamoz, and Abba-99, were selected having the most drought-tolerant genes. In the second experiment, the three selected drought-tolerant wheat cultivars under three different drought stress conditions (D-1, D-2, and D-3) were studied during 2020–2021 in a randomized complete block design (RCBD) with three replications using a split-plot arrangement. The study aimed to determine the impact of drought effects on the expression of drought-resistant genes, growth, and yield traits in wheat. The results showed that wheat cultivars differed in their possession of drought-resistant genes (ABC4, GPAT, GBSS1, and umc1283), and the bands appeared in cultivars, Iraq, Tamoz, and Abba-99, while the rest of the four cultivars had lost one or two genes. Cultivar Iraq was distinguished as the most drought-tolerant genotypes, by having an increased relative expression of genes, ABC4 and GPAT, compared with other cultivars. The D-3 - drought stress condition caused a significant reduction in the biological and grain yield, and harvest index, with a decrease of 38.85%, 12.60%, and 29.83%, respectively. Cultivar Iraq was the least affected for plant height, flag leaf area, tillers meter2, biological and grain yield, and harvest index when increasing drought severity, and these traits decreased by 16.96%, 24.08%, 44.17%, 28.08%, 15.10%, and 15.29%, respectively. Results authenticated wheat cultivars differed in the expression of drought-resistant genes, and drought resistance is largely controlled by genes.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3