MULTIDIMENSIONAL STATISTICAL MODEL FOR DETECTING OIL POLLUTION SITES BASED ON SATELLITE IMAGERY

Author:

Guliyev Alovsat Shura1,Khlebnikova Tatiana A.2

Affiliation:

1. State Oil Company of Azerbaijan Republic (SOCAR)

2. Siberian State University of Geosystems and Technologies

Abstract

The article considers an algorithm for determining the statistical model from several inhomogeneous images of the Earth's surface obtained by different sensors (optoelectronic scanning device, synthetic aperture radar (SAR)) over the sea areas. The object of the study are the methods of remote sensing of the Earth used for detection and mapping of oil spills. The aim of the research was to perform testing for a possible variation of the statistical model inside a non-uniform sliding window based on a semi-automatic approach. The proposed algorithm makes it possible to determine the spatial extent of oil production sites and oil pollution in offshore waters using multi-time RSA data and a multi-zone combined image with a spatial resolution of 10 m. First, homogeneous regions are analyzed in the image, and then the model of the analysis zone is expanded to the more general case of inhomogeneous regions that are observed in the analysis windows.

Publisher

Siberian State University of Geosystems and Technologies

Subject

Industrial and Manufacturing Engineering

Reference9 articles.

1. M. Chabert and J.-Y. Tourneret, Bivariate Pearson distributions for remote sensing images, in Proc. IEEE Int. Geosci. Remote Sens. Symp., Vancouver, Canada, July 2011, pp. 4038-4041 [Electronic resource]. - Mode of access: https://ieeexplore.ieee.org/document/6050118 (дата обращения 21.01.2021).

2. G. Mercier, G. Moser, and S. B. Serpico, Conditional copulas for change detection in heterogeneous remote sensing images, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1428-1441, May 2008 [Electronic resource]. - Mode of access:https://ieeexplore.ieee.org/abstract/document/4481231(дата обращения 21.01.2021).

3. M. S. Allili, D. Ziou, N. Bouguila, and S. Boutemedjet, Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection, IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 10, pp. 1373-1377, Oct. 2010 [Electronic resource]. - Mode of access: https://ieeexplore.ieee.org/document/5580019 (дата обращения 21.01.2021).

4. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187-198, 1997 [Electronic resource]. - Mode of access:https://ieeexplore.ieee.org/document/563664 (дата обращения 21.02.2021).

5. M. Chabert, J.-Y. Tourneret, V. Poulain, and J. Inglada, Logistic regression fordetecting changes between databases and remote sensing images, in Proc. IEEE Int.Geosci. Remote Sens. Symp., Honolulu, USA, 2010, pp. 3198-3201 [Electronic resource]. - Mode of access:https://ieeexplore.ieee.org/document/5649669 (дата обращения 21.02.2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3