Stochastic models of bioclimatic indices time series in the Arctic zone of the Russian Federation

Author:

Akenteva M. S.1,Kargapolova N. A.1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Abstract

In this paper, an approach to the numerical stochastic simulation of time series of two bioclimatic indices (wind chill index and the equivalent-effective temperature) at weather stations located in the Arctic zone of the Russian Federation is considered. The approach is based on the use of so-called “defining formulas”. On the basis of the considered approach, stochastic models of the time series of the considered bioclimatic indices were constructed, numerically implemented and verified. The models are developed on the assumption that the real bioclimatic processes are periodically correlated. The use of this assumption makes it possible to take into account the daily variation of the real processes. We also use the assumption that the real series of the wind chill index and the equivalent-effective temperature are non-Gaussian. To simulate non-stationary non-Gaussian time series, the method of inverse distribution functions is applied. The results of verification of the developed stochastic models showed that many statistical characteristics of simulated trajectories are close to the corresponding characteristics of the real series.

Publisher

Siberian State University of Geosystems and Technologies

Subject

Industrial and Manufacturing Engineering

Reference12 articles.

1. Lowe D., Ebi K.L., and Forsberg B. Heatwave Early Warning Systems and Adaptation Advice to Reduce Human Health Consequences of Heatwaves. - Int. J. Environ. Res. Public Health., 2011, vol. 8., pp. 4623-4648.

2. Гомбоева Н. Г. Климато-рекреационные ресурсы Забайкалья и их влияние на здоровье населения: автореф. дис. … канд. биол. наук: 14.00.17. / Гомбоева Нина Гындуновна. - М., 1997. - 16 с.

3. Переведенцев Ю. П., Шумихина А. В. Динамика биоклиматических показателей комфортности природной среды в Удмуртской Республике. - Ученые записки Казанского университета. Серия Естественные науки, 2016, т. 158, № 4, с. 531-547.

4. Gadzhev G., and Ganev K.Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia. - Atmosphere, 2021, vol. 12, No 8, 1078.

5. Kargapolova N. A., Khlebnikova E. I., and Ogorodnikov V. A. Numerical study of properties of air heat content indicators based on the stochastic model of the meteorological processes. - Russ. J. Num. Anal. Math. Modelling., 2019, vol. 34, No 2, pp. 95-104.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3