Exploration and optimization on the usage of micro-perforated panels as trim panels in commercial aircrafts

Author:

Chenxi L.I.1,Ying H.U.1,Liyan H.E.1

Affiliation:

1. Shanghai Aircraft Design and Research Institute

Abstract

Micro-perforated panels (MPPs), as an alternative to porous materials for sound absorption, have been commonly used in electronic industries and aircraft engines but are barely used in aircraft cabins. The effect of MPPs on the sound insulation and absorption properties of aircraft cabin panels has been investigated in this article. Theoretical modeling has been conducted on an aircraft cabin panel structure with a trim panel replaced by an MPP trim panel, using the transfer matrix method and the classic MPP theory. It is indicated by the theoretical results that, although the sound transmission loss (STL) of the cabin panel with an MPP trim panel is lower than that with an un-perforated panel, the MPP trim panel can significantly enhance the sound absorption coefficient of the entire cabin panel structure. Based on the well-developed MPP theory, the sound absorption coefficient of an aircraft cabin panel with an MPP trim panel can be improved by optimizing the MPP's parameters at a specific frequency. Taking an engine frequency 273 Hz as an example, the optimization can increase the sound absorption coefficient to 1 by using the doublelayered MPPs. When the thermal acoustic insulation blanket is considered, although the STL of the proposed structure with double-layered MPP trim panels in a diffuse field is lower than those without MPP trim panels, the sound absorption in the cabin is significantly enhanced due to the double-layer MPP trim panel at the specific engine frequency and across all frequencies. The STL of the structure with double-layered MPP trim panels and TAIB can be higher than 40 dB from 880 Hz in a diffuse field, which implies its effectiveness as sound insulation structure in aviation industry. MPP trim panels provide a new idea for the design of aircraft cabin panels and areworthy of further research

Publisher

Institute of Noise Control Engineering (INCE)

Subject

Industrial and Manufacturing Engineering,Public Health, Environmental and Occupational Health,Mechanical Engineering,Acoustics and Ultrasonics,Aerospace Engineering,Automotive Engineering,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3