Analysis of flow field characteristics and structure optimization of the split-stream rushing muffler for diesel engine

Author:

Su He1,Wu Pei1,Xue Jing1,Zhang Yongan1,Zhang Haijun1

Affiliation:

1. School of Mechanical & Electrical Engineering, Inner Mongolia Agricultural University, Engineering Technology Research Center of Intelligent Equipments on Prataculture and Aquaculture of Inner Mongolia Autonomous Region

Abstract

In order to analyze the flow field characteristics of the split-stream rushing muffler, a theoretical model describing the velocity of the split streams is established and verified by the tracer test. For this new-principle muffler, the acoustic performance and the relationship between the velocity drop of the airflow and the pressure field are analyzed, also the structure optimization of the muffler is carried out based on the orthogonal test. Finally, a new muffler is fabricated based on the designing theory of this type of muffler for a prototype of diesel engine, and the comparative analyses are conducted compared with its original muffler. The results show that the establishment and analysis of the theoretical model for velocity during the split-streams rushing process are correct. In the frequency range of 0â–“1000 Hz, the average transmission loss of split-stream rushing muffler is better than that of the original muffler. While the speed of airflow is reduced by split-streams rushing, a certain pressure loss is caused at the same time, which is about 50% of total pressure loss of the muffler, and the average fluid resistance coefficient of the split-stream rushing process is 0.91. Compared to the original muffler of the sample engine, the average insertion loss of the optimized new muffler is increased by 61.2%. At inlet air velocity of 30 m/s, the pressure loss is reduced by 16.8%. The results provide a potential for practical engineering application of this new split-stream rushing muffler in future.

Publisher

Institute of Noise Control Engineering (INCE)

Subject

Industrial and Manufacturing Engineering,Public Health, Environmental and Occupational Health,Mechanical Engineering,Acoustics and Ultrasonics,Aerospace Engineering,Automotive Engineering,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3