Discrimination method of low-current grounding fault of primary and secondary integrated equipment under three-phase asymmetric harmonic power flow calculation

Author:

Zuo Yue,Zhang Bo,Yang Wei

Abstract

In order to realize the accurate judgment of the ground fault and improve the fault discrimination effect, this paper proposes a low-current ground fault discrimination method for the primary and secondary fusion complete sets of equipment under the calculation of three-phase asymmetric harmonic power flow. The three-phase asymmetric harmonic power flow calculation is carried out, the ground fault line selection model is constructed according to the calculation results, and the faulted line is obtained by the zero-sequence active component method and the zero-sequence reactive power component method; the wavelet packet transform method is used to extract the transient zero-sequence power direction, and use it as a line selection criterion to identify whether a ground fault occurs. The amplitude characteristic enhancement value of each section is obtained by calculation. According to the distribution characteristics of the zero-sequence current amplitude of the faulted feeder, the corresponding section is selected as the fault section, and the mutation logic array is used in the determined fault section to realize the low-current grounding fault judgment. The experimental results show that the method has high judgment accuracy in practical application, and the highest value is 98.5 %, which indicates that the method can accurately judge the fault line and determine whether ground fault occurs.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3