Kinematics design and statics analysis of novel 6-DOF passive vibration isolator with S-shaped legs based on Stewart platform

Author:

Hung Vu Minh,Pham Van Bach Ngoc,Nguyen Luong Thien,Bui Trung Thanh

Abstract

Optical payloads are widely used in many fields, such as aerospace, drones, autonomous vehicles, or other highly precise instrumentation. Vibration is one of the causes that greatly affect the quality of data of highly precise optical payloads. Recently, many researcher focuses on isolating the vibration for the precise equipment, those study just only mention the overcoming of vibration in one or two directions, but in reality, an object will exist vibration in six directions in space. Therefore, it is necessary to find a new mechanism that can isolate vibration in six axes in space. The parallel mechanism is considered a viable system because of its strengths in accuracy, rigidity, and stability. In this research, the author proposes a novel 6-DOF passive vibration isolator based on the Steward platform with S-shaped legs. We have developed a 6-DOF passive vibration isolator using the S-shaped non-linear stiffness and damping characteristics. In this study, the model parameters of a vibration isolator device with legs using an S-shaped will be proposed. Based on geometrical parameters and vibration sources and some loads assuming the structure's durability problem will be calculated and evaluated the efficiency of the isolator at different frequencies. With the specially designed S-shaped it can be deformity like a spring, and with the change of structural and material parameters, we can adjust the system's stiffness and damping capacity. Due to the high static stiffness and low dynamic stiffness of each leg, and thus it is designable to isolate very well vibration isolation performance in all six directions. This research is organized as firstly the kinematics and 3D model are introduced. Secondly, the stiffness matrix of the novel 6-DOF passive vibration isolators is presented. Statics analysis of the 6-DOF passive vibration isolators revealed that the S-shaped structure provides sufficient load-carrying capacity and isolation due to its very good static nonlinear stiffness. The dynamic stiffness of the isolator in this study in each direction is very low but does not reduce the load-carrying capacity of the structure. By changing the structure and material parameters (which is very simple in a purely passive manner), we can completely adjust both the dynamic and static stiffness of the mechanism. The last series of numerical simulation results on displacement and a statics response in random excitation is carried out to show the effectiveness of the proposed 6-DOF passive vibration isolator, as well as the influence of structural parameters on vibration attenuation performance. The simulation results with the different exciting are shown to demonstrate the efficiency of the 6-DOF passive vibration isolators. Considering its simulation results A proposed new 6-DOF isolator will be applied in various engineering practices with multi-degree of freedom vibration isolation such as for precise optical payloads.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3