Author:
Lu Hua,Yang Yanxin,Zhan Xudong,Lin Ziyun
Abstract
By considering the characteristics of the time-frequency curve of ground acceleration at liquefaction sites, this research introduces the concept of a step function, defines an error function, and establishes criteria for identifying site liquefaction time. A novel method for site liquefaction time identification is proposed. One-dimensional and two-dimensional non-linear site response analysis models are established, and real liquefaction cases are studied to compare and analyze the two methods. The results demonstrate that the error function effectively identifies the moments when the frequency of the time-frequency curve of ground acceleration undergoes rapid changes, enabling the identification of site liquefaction time.
Reference16 articles.
1. J. M. Zhang., “Effect of large horizontal post-liquefaction deformation of level ground on pile foundation,” (in Chinese), Journal of Building Structures, No. 5, pp. 75–78, 2001, https://doi.org/10.14006/j.jzjgxb.2001.05.016
2. S. L. Kramer, S. S. Sideras, and M. W. Greenfield, “The timing of liquefaction and its utility in liquefaction hazard evaluation,” Soil Dynamics and Earthquake Engineering, Vol. 91, pp. 133–146, Dec. 2016, https://doi.org/10.1016/j.soildyn.2016.07.025
3. Y. Yang and E. Kavazanjian, “Numerical evaluation of liquefaction-induced lateral spreading with an advanced plasticity model for liquefiable sand,” Soil Dynamics and Earthquake Engineering, Vol. 149, p. 106871, Oct. 2021, https://doi.org/10.1016/j.soildyn.2021.106871
4. P. T. Özener, M. W. Greenfield, S. S. Sideras, and S. L. Kramer, “Identification of time of liquefaction triggering,” Soil Dynamics and Earthquake Engineering, Vol. 128, p. 105895, Jan. 2020, https://doi.org/10.1016/j.soildyn.2019.105895
5. W. Zhang, F. Ghahari, P. Arduino, and E. Taciroglu, “A deep learning approach for rapid detection of soil liquefaction using time-frequency images,” Soil Dynamics and Earthquake Engineering, Vol. 166, p. 107788, Mar. 2023, https://doi.org/10.1016/j.soildyn.2023.107788