Influence of an external alternating electromagnetic field on convective flows in the bath of an ore-thermal furnace during the melting of oxide refractory materials

Author:

Abdrakhmanov Yerkesh,Kalimbetov Galym

Abstract

Electric arc melting of oxide materials under the influence of an external electromagnetic field is a high-current and high-temperature technological process, accompanied by powerful electric and magnetic fields and complex structural motion of the melt. In the general case, the movement of the melt in the bath of an electric arc installation is determined by a combination of thermocapillary, thermal concentration, thermal and electromagnetic convections. In this work, based on the analysis of convective flows and the calculation of the integral vortex field of Archimedes forces and electromagnetic forces in the bath, using the OKB-2126A ore-thermal furnace for melting oxide refractory materials as an example, an assessment of thermal and electromagnetic convections was carried out. For the first time it has been established that the value of the integral vorticity of the field of electromagnetic forces in the depth of the bath exceeds the integral vorticity of the field of Archimedes forces by 3-4 times. In real objects, this difference is even greater, since, compared to those accepted in the calculations, the actual current density in the bath is higher, and the temperature difference is lower. Thus, electromagnetic convection in ore-thermal furnaces for melting oxide materials significantly exceeds thermal convection and makes a decisive contribution to the formation of the structure and intensity of melt movement.

Publisher

JVE International Ltd.

Subject

General Medicine

Reference19 articles.

1. R. J. Hosking and R. L. Dewar, Fundamental Fluid Mechanics and Magnetohydrodynamics. Singapore: Springer Singapore, 2016, https://doi.org/10.1007/978-981-287-600-3

2. V. I. Dubodelov, “On the application of magnetohydrodynamics in foundry technologies. History, state, prospects,” (in Russian), Journal of Metallurgy engineering, No. 3, pp. 28–34, 2019.

3. I. M. Kirko and G. E. Kirko, “Magnetic hydrodynamics. Modern vision of problems,” (in Russian), Regular and Chaotic Dynamics, Institute of Computer Research, 2019.

4. A. G. Kulikovsky and G. A. Lyubimov, Magnetic Hydrodynamics. (in Russian), Logos, 2011, p. 328.

5. T. Zürner, F. Schindler, T. Vogt, S. Eckert, and J. Schumacher, “Combined measurement of velocity and temperature in liquid metal convection,” Journal of Fluid Mechanics, Vol. 876, pp. 1108–1128, Oct. 2019, https://doi.org/10.1017/jfm.2019.556

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3