Indoor and outdoor multi-source 3D data fusion method for ancient buildings

Author:

Wei Shuangfeng,Liu Changchang,Tang Nian,Zhao Xiaoyu,Zhang Haocheng,Zhou Xiaohang

Abstract

Ancient buildings carry important information, such as ancient politics, economy, culture, customs. However, with the course of time, ancient buildings are often damaged to different degrees, so the restoration of ancient buildings is of great importance from the historical point of view. There are three commonly used non-contact measurement methods, including UAV-based oblique photogrammetry, terrestrial laser scanning, and close-range photogrammetry. These methods can provide integrated three-dimensional surveys of open spaces, indoor and outdoor surfaces for ancient buildings. Theoretically, the combined use of the three measurement methods can provide 3D (three-dimensional) data support for the protection and repair of ancient buildings. However, data from the three methods need to be fused urgently, because if the image data is not used, it will lead to a lack of real and intuitive texture information, and if only image matching point clouds are used, their accuracy will be lower than that of terrestrial laser scanning point clouds, and it will also lead to a lack of digital expression for components with high indoor historical value of ancient buildings. Therefore, in this paper, a data fusion method is proposed to achieve multi-source and multi-scale 3D data fusion of indoor and outdoor surfaces. It takes the terrestrial laser point cloud as the core, and based on fine component texture features and building outline features, respectively, the ground close-range image matching point cloud and UAV oblique image matching point cloud are registered with the terrestrial laser point cloud. This method unifies the data from three measurements in the point cloud and realizes the high-precision fusion of these three data. Based on the indoor and outdoor 3D full-element point cloud formed by the proposed method, it will constitute a visual point cloud model in producing plans, elevations, sections, orthophotos, and other elements for the study of ancient buildings.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,Instrumentation,Materials Science (miscellaneous)

Reference42 articles.

1. B. S. Yang, F. X. Liang, and R. G. Huang, “Research progress, challenges and trends of 3D laser scanning point cloud data processing,” (in Chinese), Journal of Surveying and Mapping, Vol. 46, No. 10, pp. 1509–1516, 2017, https://doi.org/10.11947/j.agcs.2017.20170351

2. A. Safdarinezhad, M. Mokhtarzade, and M. J. Valadan Zoej, “An automatic method for precise 3D registration of high resolution satellite images and airborne LiDAR data,” International Journal of Remote Sensing, Vol. 40, No. 24, pp. 9460–9483, Dec. 2019, https://doi.org/10.1080/01431161.2019.1633698

3. Q. Zhu et al., “A review of multi-point cloud data fusion methods for 3D city modeling,” (in Chinese), Journal of Wuhan University (Information Science Edition), Vol. 43, No. 12, pp. 1962–1971, 2018, https://doi.org/10.13203/j.whugis20180109

4. X. X. Yuan et al., “Research progress and prospect of dense matching of aerial images,” (in Chinese), Journal of Surveying and Mapping, Vol. 22, No. 2, pp. 555–568, 2019, https://doi.org/10.11947/j.agcs.2019.20190453

5. A. Mahphood, H. Arefi, A. Hosseininaveh, and A. A. Naeini, “Dense multi-view image matching for dsm generation from satellite images,” in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-4/W18, pp. 709–715, Oct. 2019, https://doi.org/10.5194/isprs-archives-xlii-4-w18-709-2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted Multiple Point Cloud Fusion;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3