Analysis and experimental research on the reliability of the connection between large-diameter bridge piles and caps

Author:

Ni Hongmei,Yin Xupeng

Abstract

This article investigated the construction conditions of the pile foundation in the Wuxing section of the “Shanghai Suzhou Huzhou” railway bridge project. To test the reliability of large diameter connectors, it has established a finite element model with ABAQUS software for numerical simulation. Based on on-site tests, the reliability of the connection between the pipe pile and the cover steel was studied. According to the simulation results, when the load is P= 900 kN, the displacements of A2 and A3 steel pipe piles are 55.8 mm and 60.1 mm, respectively. The load-displacement relationship shows a high-order curve distribution. According to the results of on-site experiments, the displacements are 77.9 mm and 60.2 mm, respectively. The load-displacement relationship is linear. The results for the simulation and on-site testing are consistent. This study provides a basis to the research on the reliability of the connection between large-diameter steel pipe piles.

Publisher

JVE International Ltd.

Reference26 articles.

1. R. F. Wang and J. H. Pi, “Research on subsoil reaction force of PHC pipe pile cap,” Shanxi Architecture, Vol. 17, pp. 59–60, 2005, https://doi.org/10.3969/j.issn.1009-6825.2005.17.038.s

2. X. Y. Zhang, B. K. Liu, and Y. X. Ling, “Experimental study on shear capacity of connections between prestressed concrete pipe pile and pile cap,” Building Structures, Vol. 4, pp. 11–14, 2008.

3. H. Y. Lei, W. C. Zhang, and P. Y. L., “Experimental analysis of soil squeezing effect of high-capacity pipe piles in soft soil areas,” Chinese Journal of Geotechnical Engineering, Vol. 33, pp. 478–482, 2011.

4. F. B. Dong, “Numerical analysis of horizontal bearing mechanism of high-capacity pipe pile group,” Tianjin University, 2012.

5. L. X. Liu, “Research on load transfer characteristics and bearing capacity of high-capacity pipe piles,” Tianjin University, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3