A method for the identification of denial of service (DoS) attack in network traffic using machine learning techniques

Author:

Gottapu Sankara Rao1,P. Krishna Subbarao2

Affiliation:

1. University College of Engineering, JNTUK

2. GVPCE (A)

Abstract

Computer Networks and the internet are essential to our daily lives and enterprises. DoS assaults threaten computer networks and network security. The world is evolving toward online businesses and services. This has increased network traffic over time. We need NIDS and DoS attack detection since there are more network risks and attacks. DoS attacks now threaten computer network servers. This threat must be detected automatically to protect corporate assets. Anomaly-based intrusion detection was developed because signature-based DoS attack and intrusion detection methods are inadequate. Many studies employ Machine Learning and Deep Learning to detect network anamolies. This article describes classification models constructed with the aid of machine learning algorithms. On the own dataset, this research was performed utilizing machine learning algorithms including K-Nearest Neighbor (KNN), Logistic Regression, and Random Forest. Random Forest outperforms other supervised machine learning algorithms, as demonstrated by this study's findings. It achieved an accuracy rate of 99.62% when nine features were selected utilizing Pearson's correlation coefficient method. The own dataset file (myNetworkGenerateTraffic.csv) which was captured through wireshark tool were utilized to accurately evaluate machine learning algorithms. We utilized the following performance metrics in this investigation: Accuracy, Precision, Recall, and F-1 score. In this paper, we examine how machine learning techniques can improve DoS attack prediction in network traffic to better analyze network traffic and help improve network security.

Publisher

i-manager Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3