Credit card approval prediction using machine learning

Author:

Anjani Suputri Devi D.1,Bhargavi 1,Aishwarya S. M. L.1,Karthik Sai Phanindra P.1,Vamsi T.1,Rishi Naga Mainkanta Sai K.1

Affiliation:

1. Sri Vasavi Engineering College

Abstract

This paper presents machine learning-based credit card approval prediction and gives an overview of the machine learning models and algorithms that are used to authorize credit cards for users. In order to improve credit card acceptance predictions and increase accuracy and adaptability in financial risk assessment, this study uses XGBoost in machine learning. The study emphasizes the importance of XGBoost in addressing challenges such as handling missing data, avoiding overfitting, and efficiently managing large datasets. Comparisons between the decision tree classifier and XGBoost reveal the latter's advantages, including interpretability, ability to handle complex relationships, and efficiency in processing large datasets. Results from experiments using the XGBoost algorithm demonstrate an accuracy of 90.06%, affirming its efficacy in credit card approval prediction.

Publisher

i-manager Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3