A dynamic approach for selecting load balancing algorithm in cloud

Author:

Chandrakumar M.1

Affiliation:

1. Shri Nehru Maha Vidyalaya College of Arts & Science

Abstract

The collection of interconnected computers that constitutes more than one united computing resource is known as the Cloud. In recent years, the advancement of cloud computing has facilitated the rapid arrangement of interconnected data centers that are geographically dispersed, offering high-quality and dependable services. Scalable traffic management has recently been developed in cloud data centers for traffic load balancing and quality of service provisioning. However, reducing latency during multidimensional resource allocation still remains a challenge. Hence, there is a need for efficient resource scheduling to ensure load optimization in the cloud. The objective of this work is to introduce an integrated resource scheduling and load balancing algorithm for efficient cloud service provisioning. The goal of the proposed system is to select the required load balancing algorithm to enhance resource utilization. Simulations were conducted to evaluate effectiveness using the Cloudsim simulator in cloud data centers, and the results show that the proposed method achieves better performance in terms of the average success rate, resource scheduling efficiency, and response time. The dynamic nature of cloud environments requires constant adaptation in resource allocation strategies. This necessitates the development of algorithms capable of handling diverse workloads efficiently. Additionally, the increasing complexity of applications and services hosted on the cloud demands a comprehensive approach that considers not only load balancing but also the intricacies of resource utilization. Furthermore, the proposed algorithm focuses on predictive analytics to anticipate fluctuations in demand and adjust resource allocation preemptively. By incorporating machine learning techniques, the system can adapt to changing patterns, ensuring optimal performance even in unpredictable scenarios. This holistic approach addresses the evolving challenges in cloud computing, providing a robust foundation for reliable and efficient service provisioning.

Publisher

i-manager Publications

Reference11 articles.

1. Heuristic-based load-balancing algorithm for IaaS cloud

2. Bishwkarma, M. K., & Vyas, K. (2016). Survey on round robin and shortest job first for cloud load balancing. International Journal of Engineering Research and General Science, 4(1), 437-442.

3. SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter

4. A framework for ranking of cloud computing services

5. Deadline constrained based dynamic load balancing algorithm with elasticity in cloud environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3