ANALYSIS OF SPECIALTIES OF CRYSTAL STRUCTURE FOR NON-­CHELATE CONFORMATIONS OF ETHYLENE-DIAMINETETRAACETIC ACID AND ITS SALTS WITH ALKALI AND ALKALINE EARTH METALS

Author:

Noguchi Daisuke

Abstract

In the present study, the crystal structures of non-chelating EDTA molecules and their non-chelation salts in a zwitterionic state, along with the EDTA-chelates of alkali and alkaline earth metals, were searched and overviewed. 25 non-chelating molecules of EDTA, and zwitterions of ethylenediammonium-diacetate diacetic acid HOOC-CH2-(-OOC-CH2-)NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH and their salts (ethylenediammonium-tetraace­tic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COOH)2, ethylenediammonium-acetate triacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH, and ethylenediammonium-tetraacetate (-OOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)2 with counterions), as well as 17 types of EDTA-chelates of alkali metal ions (Li+, Na+, K+, Rb+) and alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) were analyzed using data from the Cambridge Crystallographic Data Center (CCDC). Each intramolecular contact distance between nitrogen and oxygen atoms (NH+···O) has been examined and found to be around 2.7 Å. Investigation on the distribution of the intramolecular NH+··· NH+-distances of EDTA and non-chelated salts thereof also revealed that bulky counterion and certain crystal solvent molecules correspond to change in crystal packing, and that they influenced the conformers of EDTA mo­lecules among gauche form to anti form. In the existing crystalline EDTA-chelates of alkali metals as well as alkaline earth metals, various coordination numbers (CN) and the denticity (к) of EDTA anions are displayed; CN 5 to 9, and tri- and hexadentate fashions. Intramolecular contact N···O and N···N distances correspond to the metal ion radii except for the case of Sr-EDTA chelate, probably due to differences of crystal packings in addition to the number of counterions and crystal solvent molecules. The existing data on crystalline EDTA and its salts have been gathered herein, which contributes to a further understanding and exploring applications hereafter.

Publisher

V.I. Vernadsky Institute of General and Inorganic Chemistry

Subject

Energy Engineering and Power Technology,Fuel Technology,Process Chemistry and Technology,Economic Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3