Impacto del preprocesamiento en la clasificación automática de textos usando aprendizaje supervisado y reuters 21578

Author:

Arengas Acosta Jose ManuelORCID,Lopez Ramirez MisaelORCID,Guzman Cabrera RafaelORCID

Abstract

Ante la creciente generación de datos digitales, surgen retos en su gestión y categorización. Este estudio enfatiza en la clasificación automática de textos, poniendo especial énfasis en el impacto del preprocesamiento. Al emplear el conjunto de datos Reuters 21578 y aplicar algoritmos de aprendizaje supervisado como Random Forest, k-Vecinos Más Cercanos y Naïve Bayes, se analizó cómo técnicas como la tokenización y eliminación de palabras vacías influencian la precisión clasificatoria. Los hallazgos resaltan el valor agregado del preprocesamiento, destacando a "Random Forest" como el algoritmo óptimo, alcanzando una precisión del 92.2%. Este trabajo ilustra la potencialidad de combinar técnicas de preprocesamiento y algoritmos para mejorar la categorización de textos en la era digital.

Publisher

Universidad de Pamplona

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3